等边三角形的高怎么求?
等边三角形的高与边长的关系是1:2:根号3。假设等边三角形边长为6。则高等于:根号下6的平方减3的平方等于3倍的根号3。所以边长是高的2分之根号3倍。因为等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或角的平分线所在的直线。等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)。扩展资料一、等边三角形相关公式:1、周长公式:C=3a。2、面积公式:S=ah/2=√3a²/4。3、高:h=√3a/2 。二、应用方法:在全等证明题目中往往把等边三角形作为背景图形,在解题时我们要善于运用等边三角形的特殊性来达到证明全等的目的。
等边三角形的高是多少?
高如下:等边三角形的特点就是三条边相等,它的高正好是边的垂直平分线,所以,高的平方+二分之一边的平方=边的平方,计算得,高等于二分之边长的根号3(边长√3 /2)。等边三角形(又称正三边形),为三边相等的三角形,其三个内角相等,均为60°,它是锐角三角形的一种。等边三角形也是最稳定的结构。等边三角形是特殊的等腰三角形,所以等边三角形拥有等腰三角形的一切性质。简介:1、等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。2、等边三角形每条边上的中线、高线和角平分线互相重合。3、等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或角的平分线所在的直线。4、等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。
等边三角形的高怎么求出来?
等边三角形的特点就是三条边相等,它的高正好是边的垂直平分线,所以,高的平方+二分之一边的平方=边的平方计算得,高=二分边长根号3 (边长√3 /2)扩展资料等边三角形性质:(1)等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。(2)等边三角形每条边上的中线、高线和角平分线互相重合。(三线合一)(3)等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或角的平分线所在的直线。(4)等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)(5)等边三角形内任意一点到三边的距离之和为定值。(等于其高)(6)等边三角形拥有等腰三角形的一切性质。(因为等边三角形是特殊的等腰三角形)