统筹学的广义模型
为了更客观地描述现实世界中所存在的复杂的衔接关系和数量关系,引入了广义统筹模型(GAN)。其中的节点由前后两半部组成,刻画到达与离开此节点的各部分之间的关系。节点两半部的符号表示和含义如表所示。 它们分别组合成六类不同的节点(见图)。图中a是基本统筹图中的节点;b表示 A1或A2有一个完成后,B1与B2皆执行;c表示当A1与A2中有一个且只有一个完成后, B1和B2皆执行;d表示A1与A2都完成后,决定B1执行或B2执行,或各以某种概率执行;e表示A1或A2有一个完成后,决定B1执行或B2执行,或按各自的概率执行;f表示A1、A2中有一个且只有一个完成后,决定B1执行或B2执行,或按各自的概率执行。在每个节点后代表各部分的每个箭头,除时间参数外,还应有一数量表示执行该部分的概率, 如果肯定执行,概率为1。与箭头相应的参数除时间外,还可以表示费用、收益、可靠性、信息量等等。用以上节点和箭头组成的统筹图称为决策型统筹图(决策型网络图),它是进行多阶段决策的有力工具,决策树则是其中较简单的情形。进一步,如果图上与各箭头相应的参数向量(执行概率、时间、资源、可靠性、信息量等等)中有若干分量是随机变量,称为随机型统筹图(GERT)。为了找出总体最优解和与之相协调的各部分的指标与参数组,可按下述步骤对广义统筹图进行综合分析。① 进行调查研究,画出广义统筹图。② 计算整体指标。计算的方法有代数分析法、流图计算法、矩母函数与W函数法等。③ 评审与优化。根据综合的整体指标,进行方案的评审,找出现存整体的最优解,或对整体进行设计,以达到最优效果。④ 确定与整体协调的各项决策、各部分的指标与有关参数。⑤ 控制、调整和整理。对于随机型的统筹模型,在计算总体综合指标和寻找最优解时产生很大困难,因而又引入了一些求满意解(但不一定是最优解)的方法。例如统筹模拟模型(GERTS),将已建立的随机型统筹图利用计算机进行模拟,计算出整体综合指标,或求出满意解。广义网络图已被应用于阿波罗工程、公共设施的设计、多阶段决策、工程的总体可靠性分析、模拟技术等许多方面。统筹学已成为较活跃的一个管理科学的分支。一方面,它的内容随着研究与应用的进行而不断丰富,它的应用范围与效果随着计算机的发展和广泛使用而不断扩大,形成了许多有效的软件和计算机系统(如GERTS,RAMPS)。另一方面,它与数学有关分支(如随机过程、排队论、信息论、流图、随机优化和随机微分方程等等)和社会经济学结合产生了一些新的有生命力的管理科学分支,如项目管理等;且进一步推动了统筹学的发展。
统筹学的统筹模型
(1)时间—成本优化模型。整体目标涉及时间与成本时,在统筹图中与箭头相应的数字表示时间与成本的关系。(2)时间—资源优化模型。整体目标涉及时间与资源时,则可在工期一定的条件下,均衡不同时期资源需要量和相应各部分的有关参数。(3)决策型模型。在决策阶段面临各部分多种方案的选择,从整体出发,选择其中之一方案。此时统筹图上含有若干决策点。 (4)控制模型。在计划实施阶段,用以对财务、进度、资源等的控制。(5)搭接网络模型(MPM方法)。两部分之间的关系是用其中一部分的开始与结束时间与另一部分的开始和结束时间的间隔来描述的,这种关系允许两部分工作有重合搭接,便于描述联结型作业与交叉平行作业。(6)非肯定型统筹模型。与各部分相应的“给定数”是随机向量。为了更客观地描述现实世界中存在的复杂的衔接关系和数量关系,还可引进广义统筹模型,其中节点由前后两部分组成,刻画到达与离开此节点时的各部分之间的关系。用节点和箭头组成的统筹图称为决策型统筹图,是进行多阶段决策的有力工具。为找出总体最优解和与之相协调的各部分的指标和参数组,可按以下步骤分析广义统筹图。①进行调查研究,画出广义统筹图。②计算整体指标,计算方法有代数分析法、流图计算法,矩母函数与W函数法;③评审与优化。根据综合的整体指标,进行评审,找出现存整体的最优解,或对整体进行设计,以取得最优效果。④确定与整体协调的各项决策、各部分的指标与有关参数。⑤控制、调整与整理。统筹学是管理科学中较为活跃的分支,它的应用范围与效果随计算机的发展而不断扩大,并与数学的有关分支和社会经济学结合产生一些新的有生命力的管理科学分支,进一步推动了统筹学的发展。