平行线分线段成比例定理有逆定理么
平行线分线段成比例定理是没有逆定理的。定理本身没有逆定理,而是推论有逆定理(必须是三角形中)。推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。定理证明设三条平行线与直线 m 交于 A、B、C 三点,与直线 n 交于 D、E、F 三点。连结AE、BD、BF、CE根据平行线的性质可得 S△ABE=S△DBE, S△BCE=S△BEF,∴S△ABE/S△CBE=S△DBE/S△BFE根据等高三角形面积比等于底的比可得:AB/BC=DE/EF。由更比性质、等比性质得:AB/DE=BC/EF=(AB+BC)/(DE+EF)=AC/DF。以上内容参考:百度百科-平行线分线段成比例定理
平行线分线段成比例定理的介绍
平行线分线段成比例定理指的是两条直线被一组平行线(不少于3条)所截,截得的对应线段的长度成比例。过一点的一线束被平行线截得的对应线段成比例。平行于三角形一边的直线截其它两边(或两边的延长线)所得对应线段成比例。平行于三角形一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例。推论:(1)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。(2)平行于三角形一边且和其他两边相交的直线截得的三角形的三边与原三角形的三边对应成比例。
平行线分线段成比例是什么?
平行线分线段成比例定理指的是两条直线被一组平行线(不少于3条)所截,截得的对应线段的长度成比例。两条直线被一组平行线所截,截得的对应线段成比例。对应线段是指两条直线被一组平行线所截得的线段(AB与DE、BC与EF、AC与DF),对应线段成比例是指同一直线上的两条线段的比,等于另一条直线上与它们对应的线段的比。平行线分线段成比例定理1、推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。2、推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。3、平行于三角形的一边,并且和其他两边相交的直线,所截得的三边与三角形的三边对应成比例。
平行线分线段成比例定理
平行线分线段成比例定理是两条直线被一组平行线所截,截得的对应线段的长度成比例。推论平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例,平行于三角形的一边,并且和其他两边相交的直线,所截得的三边与三角形的三边对应成比例。平行线分线段特点推论的逆定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边,平行于三角形一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例。平行于三角形一边的直线截其它两边(或两边的延长线)所得对应线段成比例,平行线分线段成比例亦称平行截割定理,平面几何术语,指三条平行线截两条直线,所得的四条线段对应成比例。