对偶单纯形法前提条件
始终保持对偶问题的解的可行性,并不断改善原问题解的可行性,直至满足原问题。所谓满足对偶可行性,即指其检验数满足最优性条件。只要保持检验数满足最优性条件前提下,一旦基解成为可行解时,对偶问题和原问题均可行,由强对偶性证明,二者均有最优解。对偶单纯形法的优点:1、不需要人工变量;2、当变量多于约束时,用对偶单纯形法可减少迭代次数;3、在灵敏度分析中,有时需要用对偶单纯形法处理简化。扩展资料为了用选代法求出线性规划的最优解,需要解决以下三个问题;1、最优解判别准则,即迭代终止的判别标准;2、换基运算,即从一个基可行解迭代出另一个基可行解的方法;3、进基列的选择,即选择合适的列以进行换基运算,可以使目标函数值有较大下降。参考资料来源:百度百科——单纯形法参考资料来源:百度百科——对偶单纯形法
对偶单纯形法是什么?
对偶单纯形法是指从对偶可行性逐步搜索出原始问题最优解的方法。对偶单纯形方法纯形方法的一种对称变形.对于原单纯形方法而言,在迭代过程中始终保持相应的解对原问题是可行的,并不断改善对偶问题解(即判别系数)的可行性,直至可行。而对偶单纯形方法则是始终保持对偶问题的解的可行性,并不断改善原问题解的可行性,直至满足原问题。在求解常数项小于零的线性规划问题时,可以把原始问题的常数项视为对偶问题的检验数,原始问题的检验数视为对偶问题的常数项。优缺点1、对偶单纯形法的优点: 不需要人工变量;当变量多于约束时,用对偶单纯形法可减少迭代次数。2、对偶单纯形法缺点: 在初始单纯形表中对偶问题是基可行解,这点对多数线性规划问题很难做到。