卡尔·特奥多尔·威廉·魏尔施特拉斯的人物生平
父亲威廉·魏尔斯特拉斯是受法国雇佣的海关职员,威廉在家里十分严厉而且专断。14岁卡尔进附近帕德博恩城的一所天主教预科学校学习,在那里学习德语、拉丁语、希腊语和数学。中学毕业时成绩优秀,共获7项奖,其中包括数学,但不容卡尔有半句分辩,他的父亲却把他送到波恩大学去学习法律和商业,希望他将来在普鲁士民政部当一名文官。魏尔斯特拉斯对商业和法律都毫无兴趣。在波恩大学他把相当一部分时间花在自学他所喜欢的数学上,攻读了包括拉普拉斯的《天体力学》在内的一些名著。他在波恩的另一部分时间则花在了击剑上。魏尔斯特拉斯体魄魁伟,击剑时出手准确,加上旋风般的速度,很快就成为波恩人心目中的击剑明星。这样在波恩大学度过四年之后,魏尔斯特拉斯回到家里,没有得到他父亲所希望的法律博士学位,连硕士学位也没有得到。这使他父亲勃然大怒,呵斥他是一个“从躯壳到灵魂都患病的人”。这时多亏他家的一位朋友建议,魏尔斯特拉斯被送到明斯特去准备教师资格考试。1841年,他正式通过了教师资格考试。在这期间,他的数学老师居德曼认识到他的才能。居德曼(C.Gudermann)是一位椭圆函数论专家,他的椭圆函数论给了魏尔斯特拉斯很大影响,魏尔斯特拉斯为通过教师资格考试而提交的一篇论文的主题就是求椭圆函数的幂级数展开。居德曼在这篇论文的评语中写道:“论文显示了一位难得的数学人才,只要不被埋没荒废,一定会对科学的进步作出贡献”。居德曼的评语并没有引起任何重视,魏尔斯特拉斯在获得中学教师资格后开始了漫长的中学教师生活。他在两处偏僻的地方中学度过了包括30岁到40岁的这段数学家的黄金岁月。他在中学不光是教数学,还教物理、德文、地理甚至体育和书法课,而所得薪金连进行科学通信的邮资都付不起。但魏尔斯特拉斯以惊人的毅力,过着一种双重的生活。他白天教课,晚上攻读研究阿贝尔等人的数学著作,并写了许多论文。其中有少数发表在当时德国中学发行的一种不定期刊物“教学简介”上,但正如魏尔斯特拉斯后来的学生、瑞典数学家米塔。列夫勒所说的那样:“没有人会到中学的教学简介中去寻找有划时代意义的数学论文”。不过魏尔斯特拉斯这一段时间的业余研究,却奠定了他一生数学创造的基础。而且,这一段当时看起来默默无闻的生活,其实蕴含着巨大的力量——这就不得不提到魏尔斯特拉斯一个最大的特点:他不仅是一位伟大的数学家,而且是一位杰出的教育家!他是如此热爱教育事业,如此爱护他的学生,以致先不要提他日后培养出的一大批有成就的数学人才(其中最著名的有:柯瓦列夫斯卡娅(1850.1.15-1891.2.10,俄国女数学家、作家、政论家)、H.A.施瓦茨(Schwarz,Hermann Amandus,1843.1.25-1921.11.30,法国数学家)、I.L.富克斯(Fuchs,Immanuel Lazarus,1833.5.5-1902.4.26,法国数学家)、M.G.米塔-列夫勒(Mittag-Leffler,Magnus Gustaf,1846.3.16-1927.7.7,瑞典数学家)、F.H.朔特基(Schottky,Friedrich Hermann,1851.7.24-1935.8.12,法国数学家)、L.柯尼希贝格(Konigsberger,Leo,1837.10.15-1921.12.15,法国数学家)等。 ),即便是在这偏僻的中学当预科班的数学老师的时候,他为了能够让自己的学生们更好地理解微积分中最重要的极限概念,而改变了柯西等人当时对极限的定义,创造了著名的、直到今天大学数学分析教科书中一直沿用的极限的ε-δ定义,以及完整的一套类似的表示法,使得数学分析的叙述终于达到了真正的精确化。一直到1853年,魏尔斯特拉斯将一篇关于阿贝尔函数的论文寄给了德国数学家克雷尔主办的《纯粹与应用数学杂志》(常常简称《数学杂志》),这才使他时来运转。克雷尔的杂志素以向有创造力的年青数学家开放而著称。阿贝尔的论文在受到柯西等名家冷落的情况下却被克雷尔杂志在1827年刊登出来;雅可比的椭圆函数论论文、格林的位势论论文等数学史上的重要文献,也都是在别处得不到发表而在克雷尔的帮助下用他的杂志发表的。这一次克雷尔又出场了。他接受了魏尔斯特拉斯的论文并在第二年就发表出来,随即引起了轰动。哥尼斯堡大学一位数学教授亲自到魏尔斯特拉斯当时任教的布伦斯堡中学向他颁发了哥尼斯堡大学博士学位证书。普鲁士教育部宣布晋升魏尔斯特拉斯,并给了他一年假期带职从事研究。此后,他再也没有回到布伦斯堡。1856年,也就是他当了15年中学教师后,魏尔斯特拉斯被任命为柏林工业大学数学教授,同年被选进柏林科学院。他后来又转到柏林大学任教授直到去世。
卡尔·特奥多尔·威廉·魏尔施特拉斯的学术贡献
1、在解析函数方面他用幂级数来定义解析函数,并建立了一整套解析函数理论,与柯西(Cauchy,Augustin-Louis ,1789.8.21-1857.5.23)、黎曼(Riemann,Georg Friedrich Bernhard ,1826.9.17-1866.7.20)一起被称为函数论的奠基人。从已知的一个在限定区域内定义一个函数的幂级数出发,根据幂级数的有关定理,推导出在其它区域中定义同一函数的另一些幂级数,这是他的一项重要发现。他把整函数定义为在全平面上都能表示为收敛的幂级数的和的函数;还断定,若整函数不是多项式,则在无穷远点有一个本性奇点。魏尔斯特拉斯关于解析函数的研究成果,组成了现今大学数学专业中复变函数论的主要内容。2、在椭圆函数方面椭圆函数是双周期亚纯函数,是从求椭圆弧长引起的。有关研究是19世纪的热门课题。继阿贝尔、雅克比之后,魏尔斯特拉斯在这方面作出了巨大贡献。1882年,他将椭圆函数分别化成含有一个三次多项式的平方根的3个不同形式,把通过“反演”的第一个积分所得的椭圆函数作为基本的椭圆函数,还证明了这是最简单的双周期函数。他证明了每个椭圆函数均可用这个基本椭圆函数和它的导函数简单地表示出来。总之,魏尔斯特拉斯把椭圆函数论的研究推到了一个新的水平,进一步完备了、改写了、并且美化了其理论体系。3、在代数领域1858年,他对同时化两个二次型成平方和给出了一般方法,并证明了若二次型之一是正定的,即使某些特征值相等,这个化简也是可能的。1868年,他已完成二次型的理论体系,并将这些结果推广到了双线性型。4、在变分学方面1879年,他证明了弱变分的3个条件,即函数取得极小值的充分条件。此后,他转向了强变分问题,并得到了强变分的极大值的充分条件。在变分学方面还得到了不少的其它成果。5、在微分几何方面魏尔斯特拉斯研究了侧地线和最小曲面。6、在数学分析方面在数学史上,魏尔斯特拉斯关于分析严格化的贡献使他获得了“现代分析之父”的称号。他是把严格的论证引进分析学的一位大师,为分析严密化作出了不可磨灭的贡献,是分析算术化运动的开创者之一。这种严格化的突出表现是创造了一套语言,用以重建分析体系。他批评柯西等前人采用的“无限地趋近”等说法具有明显的运动学含义,代之以更严密的 表述,用这种方式重新定义了极限、连续、导数等分析基本概念,特别是通过引进以往被忽视的一致收敛性而消除了微积分中不断出现的各种异议和混乱。可以说,数学分析达到今天所具有的严密形式,本质上归功于魏尔斯特拉斯的工作。他证明了(1860):任何有界无穷点集,一定存在一个极限点。早在1860年的一次演讲中,他从自然数导出了有理数,然后用递增有界数列的极限来定义无理数,从而得到了整个实数系。这是一种成功地为微积分奠定理论基础的理论。为了说明直觉的不可靠,1872年7月18日魏尔斯特拉斯在柏林科学院的一次讲演中,构造了一个连续函数却处处不可微的例子,由此一举改变了当时一直存在的“连续函数必可导”的重大误解,震惊了整个数学界!这个例子推动了人们去构造更多的函数,这样的函数在一个区间上连续或处处连续,但在一个稠密集或在任何点上都不可微,从而推动了函数论的发展。早在1842年,魏尔斯特拉斯就有了一致收敛的概念,并利用这一概念给出了级数逐项积分和在积分号下微分的条件。1885年,魏尔斯特拉斯所证明的用多项式任意逼近连续函数的定理,是二十世纪的一个广阔研究领域函数构造论,即函数的逼近与插值理论的出发点之一。另外,魏尔斯特拉斯还研究了天文学中的n体问题和光的理论。
证明魏尔斯特拉斯函数?简洁些
由于无穷级数的每一个函数项a^n \cos(b^n \pi x)的绝对值都小于常数a^n,而正项级数 \sum_{n=0} ^\infty a^n 是[[收敛]]的.由[[比较审敛法]]可以知道原级数一致收敛.因此,由于每一个函数项a^n \cos(b^n \pi x)都是{\mathbb R}上的连续函数,级数和f(x) 也是{\mathbb R}上的连续函数.
下面证明函数处处不可导:对一个给定的点x \in {\mathbb R},证明的思路是找出趋于x 的两组不同的数列(x_n) 和 (x'_n),使得
:\lim \inf \frac{f(x_n) - f(x)}{x_n - x} > \lim \sup \frac{f(x'_n) - f(x)}{x'_n - x}.
这与函数可导的定义矛盾,于是证明完毕