高中物理模型解题法

时间:2024-10-21 11:24:30编辑:思创君

高中物理最难的部分 高考物理48个解题模型

高中物理是很多学生头痛的一大科目,下文我给大家整理了一些物理高考的解题模型,供参考! 高中物理哪个部分最难 动力学部分 动力学是高中物理的基础,在高中物理中占有很重要的位置,高中在动力学方面出的题目也非常多,所以动力学被很多同学认为是物理最难的部分。 高中生想要学好动力学,就要掌握好每一个物体的运动规律,熟练掌握每一个动力学公式。熟练掌握每一个公式之后,还要通过做大量的习题才能提高自己的学习成绩,真正的掌握动力学。 电学部分 高中生从初中开始就会接触电学,进入高中之后就会发现,高中的电学与初中的电学知识有很大的不同,高中物理电学非常的抽象,有很多的定律不仅需要去记忆,还要对这些记忆进行理解,所以电学也是被很多同学认为是物理最难的部分。 在高中生学习力学时,要准确的了解每一个概念的含义,由于电学方面的知识非常的抽象,所以学生需要花更多的时间去分析每个概念和定义,并且要做一些相应的练习题来做相应的理解辅助。 能量守恒 能量守恒在物理中是一个难点,同样也是大小考试中最爱出题的点。很多人认为能量守恒这方面的题型非常难做。 学生在分析能量守恒题时,一旦分析的任何一个步骤出现错误题目,题目就没有办法正确的解答出来。而能量守恒的题型对于知识点的考察非常的多,对于学生的逻辑思维要求的高。 物理大题解题模型参考 必修一 1、传送带模型:摩擦力,牛顿运动定律,功能及摩擦生热等问题。 2、追及相遇模型:运动规律,临界问题,时间位移关系问题,数学法(函数极值法。图像法等) 3、挂件模型:平衡问题,死结与活结问题,采用正交分解法,图解法,三角形法则和极值法。 4、斜面模型:受力分析,运动规律,牛顿三大定律,数理问题。 必修二 1、“绳子、弹簧、轻杆”三模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题。 2、行星模型:向心力(各种力),相关物理量,功能问题,数理问题(圆心。半径。临界问题)。 3、抛体模型:运动的合成与分解,牛顿运动定律,动能定理(类平抛运动)。 选修3-1 1、“回旋加速器”模型:加速模型(力能规律),回旋模型(圆周运动),数理问题。 2、“磁流发电机”模型:平衡与偏转,力和能问题。 3、“电路的动态变化”模型:闭合电路的欧姆定律,判断方法和变压器的三个制约问题。 4、“限流与分压器”模型:电路设计,串并联电路规律及闭合电路的欧姆定律,电能,电功率,实际应用。 选修3-2 1、电磁场中的单杆模型:棒与电阻,棒与电容,棒与电感,棒与弹簧组合,平面导轨,竖直导轨等,处理角度为力电角度,电学角度,力能角度。 2、交流电有效值相关模型:图像法,焦耳定律,闭合电路的欧姆定律,能量问题。 选修3-4 1、“对称”模型:简谐运动(波动),电场,磁场,光学问题中的对称性,多解性,对称性。 2、“单摆”模型:简谐运动,圆周运动中的力和能问题,对称法,图象法。 选修3-5 1、“爆炸”模型:动量守恒定律,能量守恒定律。 2、“能级”模型:能级图,跃迁规律,光电效应等光的本质综合问题。

高中物理模型在教学中的应用

一、什么是物理模型?

物理模型是人们为了抓住物体的主要矛盾、本质、忽略次要矛盾而形成的对物质、状态或过程的一种理想化的思维方式。它反映物体的本质,反映物体运动过程的规律,它是科学研究的一种思维方法。

二、高中物理模型的分类

高中物理模型按照物体对象的特点与条件可粗略分为四种模型,它们分别是物质模型、物理过程模型、理想化实验模型与问题模型。质点、点电荷、理想变压器、理想气体与理想电表,它们都指向一个物体对象,都是忽略次要因素,抓住了影响问题的主要因素提出的理想化物质对象,它们是物质模型。高中描述的各种运动,如匀速直线运动、匀变速直线运动、抛体运动与匀速圆周运动运动,它们属于物理过程模型,描述的是一个运动过程。气体的等压、等温、等容实验、伽利略的斜面理想实验、物体的弹性碰撞,是属于理想化实验模型,它是揭示规律的重要途径。子弹射木块问题、滑块滑板问题是常见的问题模型,它们以问题的形式出现,掌握这个模型对提高解决实际问题的能力有很大帮助。

三、物理模型在教学中的作用

1、物理模型是一种科学研究的思维方法

不管是物质模型还是过程模型,都有着抓住主要矛盾、忽略次要矛盾,都有着去繁就简的思维过程,这是一种科学研究的思维方法。我们有理由让学生认识并且把这种思维方式复制到其他方面。

2、物理模型教学有助于提高学生对知识的理解

物理学知识深奥难懂,它不像历史等文科,只需用简单的思维就能学好。物理学科需要很强的数学思维能力,如几何的,代数的。所以,应用模型教学有助于把知识化繁为简,这也是模型的最重要的特质。如火箭的发射,可以运用碰撞的问题模型,然后运用动量守恒定律求解。也就是说,模型既是学习的内容,也是更好学习物理知识的手段。

3、物理模型教学有助于提高学生解决实际问题的能力

物理是高中最难学的学科之一,难学在于它本身的知识网络大、深奥难懂,比如动量定理、动量守恒定律;难学也在于它放在实际的情景中,需要思考如何审题、如何找到解决问题的思路,这也是学生常说的“一听就懂,一做就蒙”根本原因;难学还在它不是独立的,而是与数学紧密联系在一起的,比如各种几何图形的规律、计算方程组等,可以说,没有好数学的基础,物理是很难拿高分的。

物理模型可以脱离实际问题,把情境抽象成一种熟悉的模型,比如炮弹的运动与带电粒子垂直于电场方向的运动都可以抽象成抛体运动模型,运用抛体运动的规律求解。这些看似复杂的情景看成某个模型,简化了问题,从而提高了解决实际问题的能力。甚至这种能力还会拓展到思维品质上,使学生养成实事求是的科学态度。

四、如何构建物理模型?

下面以构建圆周运动的过程模型来说明构建的方法与步骤:

1、教学目标分析

在自然状态下运动的物体也会随着外界条件的变化,不断改变运动状态,在解决实际问题时,如果不进行基本假设并建立物理模型是不可能得到可靠结果的。举例如汽车在圆形弯道上行驶时属于圆周运动,运动过程中汽车在弯道上行驶所需的向心力超过最大静摩擦力时,汽车就会偏离运行轨道。在分析这个问题时就要建立圆周运动的过程模型,通过对比力的大小来处理实际问题。

2、情境创设

汽车在道路上行驶时遇到紧急情况,采用何种方式能够更好地避免或降低车祸。例如假设汽车的最大静摩擦力等于滑动摩擦力,当汽车执行遇到突发状况是急转弯还是急刹车?

3、构建理想化模型

上述情境中,汽车遇到紧急状况时不论采用哪种处理方式都是要尽可能的避免事故的发生,或减少事故造成的危害。但建立物理模型时需要采用不同的理论分析,这就要求学生分析两种措施的运动规律,满足了什么条件。急转弯汽车做圆周运动,静摩擦力提供向心力,当圆周运动半径小于前方的障碍物时,不会发生交通事故,这时可以通过建立圆周运动模型来分析;急刹车则是在滑动摩擦力下做减速直线运动,当到达前方障碍物时速度为零时,不会发生交通事故,这时可以通过假设建立匀变速直线运动模型进行分析。

4、解答

急转弯时匀速圆周运动的向心力由静摩擦力提供, ,圆周运动的最小半径为: ,也就是大于这个半径又不撞到物体都是可以的。

急刹车时假设汽车做匀减速直线运动,受到阻力恒定,则: ,其加速度为: ,汽车的行驶距离为: ,也就是说当行驶距离小于障碍物距离时,汽车是安全的。

以上就是我总结的物理模型在教学中的运用,希望自己以课题研究为契机,好好学习模型教学,不断提高教学的水平。


高中物理48个解题模型 高考物理经典题型归纳

学好高中物理可以多积累些做题解题的经典模型。下文我给大家整理了高中物理最常用的几种解题模型,供参考! 高中物理解题常用经典模型 1、'皮带'模型:摩擦力,牛顿运动定律,功能及摩擦生热等问题. 2、'斜面'模型:运动规律,三大定律,数理问题. 3、'运动关联'模型:一物体运动的同时性,独立性,等效性,多物体参与的独立性和时空联系. 4、'人船'模型:动量守恒定律,能量守恒定律,数理问题. 5、'子弹打木块'模型:三大定律,摩擦生热,临界问题,数理问题. 6、'爆炸'模型:动量守恒定律,能量守恒定律. 7、'单摆'模型:简谐运动,圆周运动中的力和能问题,对称法,图象法. 8.电磁场中的'双电源'模型:顺接与反接,力学中的三大定律,闭合电路的欧姆定律.电磁感应定律. 9.交流电有效值相关模型:图像法,焦耳定律,闭合电路的欧姆定律,能量问题. 10、'平抛'模型:运动的合成与分解,牛顿运动定律,动能定理(类平抛运动). 11、'行星'模型:向心力(各种力),相关物理量,功能问题,数理问题(圆心.半径.临界问题). 12、'全过程'模型:匀变速运动的整体性,保守力与耗散力,动量守恒定律.动能定理.全过程整体法. 13、'质心'模型:质心(多种体育运动),集中典型运动规律,力能角度. 14、'绳件.弹簧.杆件'三件模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题. 15、'挂件'模型:平衡问题,死结与活结问题,采用正交分解法,图解法,三角形法则和极值法. 16、'追碰'模型:运动规律,碰撞规律,临界问题,数学法(函数极值法.图像法等)和物理方法(参照物变换法.守恒法)等. 17.'能级'模型:能级图,跃迁规律,光电效应等光的本质综合问题. 18.远距离输电升压降压的变压器模型. 19、'限流与分压器'模型:电路设计,串并联电路规律及闭合电路的欧姆定律,电能,电功率,实际应用. 20、'电路的动态变化'模型:闭合电路的欧姆定律,判断方法和变压器的三个制约问题. 21、'磁流发电机'模型:平衡与偏转,力和能问题. 22、'回旋加速器'模型:加速模型(力能规律),回旋模型(圆周运动),数理问题. 23、'对称'模型:简谐运动(波动),电场,磁场,光学问题中的对称性,多解性,对称性. 24、电磁场中的单杆模型:棒与电阻,棒与电容,棒与电感,棒与弹簧组合,平面导轨,竖直导轨等,处理角度为力电角度,电学角度,力能角度。 高中物理解题模型总结 必修一 1、传送带模型:摩擦力,牛顿运动定律,功能及摩擦生热等问题。 2、追及相遇模型:运动规律,临界问题,时间位移关系问题,数学法(函数极值法。图像法等) 3、挂件模型:平衡问题,死结与活结问题,采用正交分解法,图解法,三角形法则和极值法。 4、斜面模型:受力分析,运动规律,牛顿三大定律,数理问题。 必修二 1、“绳子、弹簧、轻杆”三模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题。 2、行星模型:向心力(各种力),相关物理量,功能问题,数理问题(圆心。半径。临界问题)。 3、抛体模型:运动的合成与分解,牛顿运动定律,动能定理(类平抛运动)。 选修3-1 1、“回旋加速器”模型:加速模型(力能规律),回旋模型(圆周运动),数理问题。 2、“磁流发电机”模型:平衡与偏转,力和能问题。 3、“电路的动态变化”模型:闭合电路的欧姆定律,判断方法和变压器的三个制约问题。 4、“限流与分压器”模型:电路设计,串并联电路规律及闭合电路的欧姆定律,电能,电功率,实际应用。 选修3-2 1、电磁场中的单杆模型:棒与电阻,棒与电容,棒与电感,棒与弹簧组合,平面导轨,竖直导轨等,处理角度为力电角度,电学角度,力能角度。 2、交流电有效值相关模型:图像法,焦耳定律,闭合电路的欧姆定律,能量问题。 选修3-4 1、“对称”模型:简谐运动(波动),电场,磁场,光学问题中的对称性,多解性,对称性。 2、“单摆”模型:简谐运动,圆周运动中的力和能问题,对称法,图象法。 选修3-5 1、“爆炸”模型:动量守恒定律,能量守恒定律。 2、“能级”模型:能级图,跃迁规律,光电效应等光的本质综合问题。

[高中物理的公式总结介绍]高中物理48个解题模型

高二网权威发布高中物理的公式总结介绍,更多高中物理的公式总结介绍相关信息请访问高二网。 【导语】高中物理是一门联系很广泛的学科,在物理的学习中会有很多的公式需要学生记忆,下面大范文网将为大家带来高中物理的公式的记忆的方法介绍希望能够帮助到大家。

  匀变速直线运动公式总结

  1.平均速度V平=s/t(定义式)

  2.有用推论Vt2-Vo2=2as

  3.中间时刻速度Vt/2=V平=(Vt+Vo)/2

  4.末速度Vt=Vo+at

  5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2

  6.位移s=V平t=Vot+at2/2=Vt/2t

  7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}

  8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差}

  9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

  注:

  (1)平均速度是矢量;

  (2)物体速度大,加速度不一定大;

  (3)a=(Vt-Vo)/t只是量度式,不是决定式;

  有关摩擦力的知识总结

  1、摩擦力定义:当一个物体在另一个物体的表面上相对运动(或有相对运动的趋势)时,受到的阻碍相对运动(或阻碍相对运动趋势)的力,叫摩擦力,可分为静摩擦力和滑动摩擦力。

  2、摩擦力产生条件:①接触面粗糙;②相互接触的物体间有弹力;③接触面间有相对运动(或相对运动趋势)。

  说明:三个条件缺一不可,特别要注意“相对”的理解。

  3、摩擦力的方向:

  ①静摩擦力的方向总跟接触面相切,并与相对运动趋势方向相反。

  ②滑动摩擦力的方向总跟接触面相切,并与相对运动方向相反。

  说明:(1)“与相对运动方向相反”不能等同于“与运动方向相反”。

  滑动摩擦力方向可能与运动方向相同,可能与运动方向相反,可能与运动方向成一夹角。

  (2)滑动摩擦力可能起动力作用,也可能起阻力作用。

  4、摩擦力的大小:

  (1)静摩擦力的大小:

  ①与相对运动趋势的强弱有关,趋势越强,静摩擦力越大,但不能超过最大静摩擦力,即0≤f≤fm但跟接触面相互挤压力FN无直接关系。具体大小可由物体的运动状态结合动力学规律求解。

  ②最大静摩擦力略大于滑动摩擦力,在中学阶段讨论问题时,如无特殊说明,可认为它们数值相等。

  ③效果:阻碍物体的相对运动趋势,但不一定阻碍物体的运动,可以是动力,也可以是阻力。

  (2)滑动摩擦力的大小:

  滑动摩擦力跟压力成正比,也就是跟一个物体对另一个物体表面的垂直作用力成正比。

  公式:F=μFN(F表示滑动摩擦力大小,FN表示正压力的大小,μ叫动摩擦因数)。

  说明:①FN表示两物体表面间的压力,性质上属于弹力,不是重力,更多的情况需结合运动情况与平衡条件加以确定。

  ②μ与接触面的材料、接触面的情况有关,无单位。

  ③滑动摩擦力大小,与相对运动的速度大小无关。

  5、摩擦力的效果:总是阻碍物体间的相对运动(或相对运动趋势),但并不总是阻碍物体的运动,可能是动力,也可能是阻力。

  说明:滑动摩擦力的大小与接触面的大小、物体运动的速度和加速度无关,只由动摩擦因数和正压力两个因素决定,而动摩擦因数由两接触面材料的性质和粗糙程度有关。

  能量守恒定律公式总结

  1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米

  2.油膜法测分子直径d=V/s{V:单分子油膜的体积(m3),S:油膜表面积(m)2}

  3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。

  4.分子间的引力和斥力(1)r10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0

  5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕}

  6.热力学第二定律

  克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);

  开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出

  7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}

  注:

  (1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;

  (2)温度是分子平均动能的标志;

  (3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;

  (4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;

  (5)气体膨胀,外界对气体做负功W0;吸收热量,Q>0

  (6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;

  (7)r0为分子处于平衡状态时,分子间的距离;

  功和能转化公式总结

  1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}

  2.重力做功:Wab=mghab{m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}

  3.电场力做功:Wab=qUab{q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}

  4.电功:W=UIt(普适式){U:电压(V),I:电流(A),t:通电时间(s)}

  5.功率:P=W/t(定义式){P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}

  6.汽车牵引力的功率:P=Fv;P平=Fv平{P:瞬时功率,P平:平均功率}

  7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)

  8.电功率:P=UI(普适式){U:电路电压(V),I:电路电流(A)}

  9.焦耳定律:Q=I2Rt{Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}

  10.纯电阻电路I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt

  11.动能:Ek=mv2/2{Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}

  12.重力势能:EP=mgh{EP:重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}

  13.电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}

  14.动能定理(对物体做正功,物体的动能增加):W合=mvt2/2-mvo2/2或W合=ΔEK{W合:外力对物体做的总功ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}

  15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2

  16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP

  注:

  (1)功率大小表示做功快慢,做功多少表示能量转化多少;

  (2)O0≤α<90O做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);

  (3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少

  (4)重力做功和电场力做功均与路径无关

  (5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;

  (6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;

  (7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。


高中物理68个解题技巧

如下:1、见物思理,多观察,多思考。物理讲的是“万物之理”,在我们身边到处都蕴含着丰富的、取之不尽用之不竭的物理知识。只要我们保持一颗好奇之心,注意观察各种自然现象和生活现象。2、学会从“定义”去寻找错因。对于基本公式,规律,概念要特别重视。“死记知识永远学不好物理!”最聪明的学生都会从基本公式和概念上去寻找错误的根源,并且能够做到从一个错题能复习一大片知识——这是一个学生学习物理是否开窍的最重要的标志!3、把“陌生”变成“透彻”。遇到陌生的概念,比如“势能”“电势”“电势差”等等先不要排斥,要先去真心接纳它,再通过听老师讲解、对比、应用理解它。要有一种“不破楼兰终不还”的决心和“打破沙锅问到底”的研究精神。这样时间长了,应用多了,陌生的就变成了透彻的了。4、把“错题”变成“熟题”。建立错题本。在建立错题本时,不要两天打鱼三天晒网,要持之以恒,不能半途而废。尤其注意建立错题本的方法和技巧,要有自己的创新、智慧以及汗水凝结在里面,力求做到赏心悦目,让人看了赞不绝口,自己看了会赞美自己的杰作。5、不管学哪一部分内容都要抓住重点,抓住主干。俗话说“打蛇打七寸”,抓住要害就等于抓住了命脉。而每一本书、每一单元、每一节课、每个练习都有关键考察点和关键的解决方法。这些就是物理中的“命脉”所在。

高中物理的解题技巧

  导语:学好物理不仅要注重平时的积累学习,还要注意保持好心态及答题时的技巧,本文为大家介绍了高中物理答题中常见的技巧包括心态的保持,选择题,计算题,大题,易错题的答题方式技巧,为大家平时考试时做题提供了方法,希望大家能好好掌握这些高中物理答题技巧。   高中物理的解题技巧   一,考场中心态的保持   心态“安静”:心静自然“凉”,脑子自然清醒,精力自然集中,思路自然清晰。心静如水,超然物外,成为时间的主人、学习的主人。情绪稳定,效率提高。心不静,则心乱如麻,心神不定,心不在焉,如坐针毡,眼在此而心在彼,貌似用功,实则骗人。   二,高中物理选择题的答题技巧   选择题一般考查学生对基本知识和基本规律的理解及应用这些知识进行一些定性推理和定量计算。解答选择题时,要注意以下几个问题:   (1)每一选项都要认真研究,选出最佳答案,当某一选项不敢确定时,宁可少选也不错选。   (2)注意题干要求,让你选择的是“不正确的”、“可能的”还是“一定的”。   (3)相信第一判断:凡已做出判断的题目,要做改动时,请十二分小心,只有当你检查时发现第一次判断肯定错了,另一个百分之百是正确答案时,才能做出改动,而当你拿不定主意时千万不要改。特别是对中等程度及偏下的同学这一点尤为重要。   (4)做选择题的常用方法:   ①筛选(排除)法:根据题目中的信息和自身掌握的知识,从易到难,逐步排除不合理选项,最后逼近正确答案。   ②特值(特例)法:让某些物理量取特殊值,通过简单的分析、计算进行判断。它仅适用于以特殊值代入各选项后能将其余错误选项均排除的选择题。   ③极限分析法:将某些物理量取极限,从而得出结论的方法。   ④直接推断法:运用所学的物理概念和规律,抓住各因素之间的联系,进行分析、推理、判断,甚至要用到数学工具进行计算,得出结果,确定选项。   ⑤观察、凭感觉选择:面对选择题,当你感到确实无从下手时,可以通过观察选项的异同、长短、语言的肯定程度、表达式的差别、相应或相近的物理规律和物理体验等,大胆的做出猜测,当顺利的完成试卷后,可回头再分析该题,也许此时又有思路了。   ⑥熟练使用整体法与隔离法:分析多个对象时,一般要采取先整体后局部的方法。   三.物理实验题的做题技巧   (1)实验题一般采用填空题或作图题的形式出现。作为填空题,数值、单位、方向或正负号都应填全面;作为作图题:①对函数图像应注明纵、横轴表示的物理量、单位、标度及坐标原点。②对电学实物图,则电表量程、正负极性,电流表内、外接法,变阻器接法,滑动触头位置都应考虑周全。③对光路图不能漏箭头,要正确使用虚、实线,各种仪器、仪表的`读数一定要注意有效数字和单位;实物连接图一定要先画出电路图(仪器位置要对应);各种作图及连线要先用铅笔(有利于修改),最后用黑色签字笔涂黑。   (2)常规实验题:主要考查课本实验,几年来考查比较多的是试验器材、原理、步骤、读数、注意问题、数据处理和误差分析,解答常规实验题时,这种题目考得比较细,要在细、实、全上下足功夫。   (3)设计型实验重在考查实验的原理。要求同学们能审清题意,明确实验目的,应用迁移能力,联想相关实验原理。一定要强调四性(科学性、安全性、准确性、简便性),如在设计电学实验时,要把安全性放在第一位,同时还要尽可能减小实验的误差,避免出现大量程测量小数值的情况。   四.高中物理计算题的答题技巧   (1)仔细审题,明确题意   每一道计算题,首先要认真读题,弄清题意。审题是对题目中的信息进行搜索、提取、加工的过程。我们初审时所获取的信息,可能既包含有利的解题信息,又包含不利的解题信息,也有可能是不完整的,这都会使解题偏离正确的方向,造成一步错,步步错的局面。在审题中,要全面细致,特别重视题中的关键词和数据,如静止、匀速、恰好达到最大速度、匀加速、初速为零,一定、可能、刚好等。一般物理题描述的可能是一个较为复杂的运动过程,此种情况下,要把整个过程分解成几个不同的阶段,充分地想象、分析、判断,建立起完整准确的物理情景和模型,还常常要通过画草图展示物理情景来帮助理解题意,保证审题的准确性。否则,一旦做题方向偏了,只能是白忙一场。   (2)敢于做题,贴近规律   立足于数学方法,解题就是建立起与未知数数量相等的方程个数,然后求解。怎样建立方程呢?方程蕴含在物理过程中以及整个过程的各个阶段中,存在于状态或状态变化之中;隐藏在约束关系之中。   首先应由题目中的物理现象及过程所对应的或贴近的物理规律,建立主体关系式。然后,根据物理过程建立题意所提供信息的纵向、横向的相互联系和相互制约关系。所谓纵向关系是指同一研究对象的前后过程的相互关系;所谓横向关系是指某一研究对象与其他物体间的相互关系。   (3)敢于解题,深于研究   遇到设问多、信息多、过程复杂的题目,在审题过程中,若明确了某一阶段的情景,并   列出了方程。要敢于先把结果解出来,这对完全理顺题意起着至关重要的作用。   ①很多情况下第二阶段的情景要由第一阶段的结果来判定,所以第一阶段的结果成为打通障碍的重要武器。   ②当所列方程的个数少于未知数的个数时,一次处理可同时消去两个未知数。如用下图所示电路可测量出电池电动势E和(r+R0),除非R0已知,才可测出电池内阻r。   (4)重视规范,力争高分。   解题规范化的具体要求:书写清楚,规律方程原始准确、条理规范,文字符号要统一,单位使用要统一,作图要规范,结果要检验(是否符合物理实际和物理规律),最后要有明确结论。弄清楚哪些是已知条件,哪些是未知条件,最后结果必须用已知条件或要求的字母表示。   五.常见物理易错易混问题:   (1)、判断两个矢量是否相等时或回答所求的矢量时不注意方向;   (2)、求作用力和反作用力时不注意运用牛顿第三定律进行说明;   (3)、不管题目要求g值习惯取10m/s2,在计算某星球上的平抛、落体等问题时,很容易出现把地球表面的重力加速度g=9.8m/s2当做星球表面的重力加速度处理情况;   (4)、受力分析时不完整,运用牛顿第二定律和运动学公式解题时合外力漏掉重力;   (5)、字母不用习惯写法或结果用未知量表示,大小写不分(如L和l),求得物理量不带单位(对字母表示的结果做完后可用单位制检验其是否正确);   (6)、不按题目要求答题,画图不规范;   (7)、求功时不注意回答正负功;   (8)、不注意区分整体动量守恒和某方向动量守恒;   (9)、碰撞时不注意是否有能量损失,两物体发生完全非弹性碰撞时,动能(机械能)损失最多,损失的动能在碰撞瞬间转变成内能;   (1)0、运用能量守恒解题时能量找不齐;   (11)、求电路中电流时找不齐电阻,区分不清谁是电源谁是外电阻,求通过谁的电流;   (12)、求热量时区分不清是某一电阻的还是整个回路的;   (13)、实验器材读数时不注意有效数字的位数;   (14)、过程分析不全面,只注意到开始阶段,而忽视对全过程的讨论;   (15)、分析题意时,不注意是水平平面还是竖直平面,是记重力还是不计重力,计算数值错误等引起分析题意出现差错,无法求解。

上一篇:曹魏轩辕录修改器

下一篇:没有了