大学数学竞赛试题

时间:2024-11-04 20:31:41编辑:思创君

求2011全国数学竞赛模拟试题

211年全国初中数学竞赛模拟试题
班级__________学号__________姓名______________得分______________
一、选择题(本题满分30分,每小题5分)
1.99个连续自然数之和等于abcd.若a、b、c、d皆为质数,则a+b+c+d的最小值等于


(A)63
(B)70
(C)86
(D)97
2.设P、Q分别是单位正方形BC、CD边上的点,且△APQ是正三角形,那么正三角形的边长为


(A)
(B)
(C)
(D)
3.实数a、b、c两两不等,且三点的坐标分别为:A(a+b,c),B(b+c,a),C(c+a,b),则这三点的位置关系是


(A)组成钝角三角形
(B)组成直角三角形
(C)组成等边三角形
(D)三点共线
4.对任意给定的△ABC,设它的周长为l,外接圆半径为R,内切圆的半径为r,则


(A)l>R+r
(B)l≤R+r
(C)
<R+r<6l
(D)以上均不对
5.平面上有P、Q两点,以P为外心、Q为内心的三角形的数量为


(A)只能画出一个
(B)可以画出2个
(C)最多画出3个
(D)能画无数个
6.如图,若将正方形分成k个全等的矩形,其中上、下各横排两个,中间竖排若干个,则k的值为


(A)6
(B)8
(C)10
(D)12
二、填空题(本题满分30分,每小题5分)
1.如图,梯形ABCD中,DC‖AB,DC∶AB=1∶2,MN‖BD且平分AC.若梯形ABCD的面积等于
,S△AMN=
,则

=__________.
2.不等式|x+7|-|x-2|<3的解是____________.
3.若自然数n能使〔
〕整除n,则n的所有表达式为_____________.
4.小李用5000元买了一年期的某种债券,到期后从本利和中支取2000元用于购物,把剩下的钱又买了这种一年期债券,若这种债券的利率不变,到期后得本利和为3498元,那么这种债券的年利率是__________.
5.圆内接凸四边形ABCD的边AB∶BC∶CD∶DA=1∶9∶9∶8,AC交BD于P,则S△PAB∶S△PBC∶S△PCD∶S△PDA=____________.
6.销售某种商品,如果单价上涨m%,则售出的数量就将减少
.为了使该商品的销售总金额最大,那么m的值应该确定为____________.
三、解答题(本题满分60分,每小题20分)
1.如图,∠CAB=∠ABD=90o,AB=AC+BD,AD交BC于P,作⊙P使其与AB相切.试问:以AB为直径作出的⊙O与⊙P是相交?是内切?还是内含?请作出判断并加以证明.
2.设α、β是整系数方程x2+ax+b=0的两个实数根,且α2+β2<4,试求整数对(a,b)的所有可能值.
3.a、b、c为互不相等的数,若以下三个等式中有任意两个等式成立,求证:第三个等式也成立.
(b2+bc+c2)x2-bc(b+c)x+b2c2=0;
(c2+ca+a2)x2-ca(c+a)x+c2a2=0;
(a2+ab+b2)x2-ab(a+b)x+a2b2=0.


陕西省大学生数学竞赛题

过程不好打,我语言描述下,如有不明白可问我
1.由三角形三边关系可知BC小于100大于20,由于角BAC是钝角可推出BC大于10倍根号下52,即可知BC大于70,由BD,DC为正整数知BC,DC也均为正整数.易知AC^2-AB^2=BC*DC,而BC小于100大于70,则只能为80,此时DC=25(验证方法是当BC=100时DC=20,BC=70时DC小于28,将28至20代入发现只有25满足都是整数)
2.由求根公式得两根为P加减根号下5P+1,所以5P+1为完全平方数,设根号下5P+1=A,则5P=A^2-1=(A+1)(A-1),由于P是质数所以5P只能分解为5*P,即5,P,(A-1),(A+1)一一对应,所以P应为3或7
3.若N为奇数,则5N+3是偶数,必不为质数,所以N为偶数.2N+1,3N+1两者平方根若为一奇一偶,则平方差也为奇数,但是(3N+1)-(2N+1)为偶数,所以两个平方根同奇偶,则两者和差均为偶数,即N=两个偶数之积.设N=4M,M为一正整数.则原题变为两个完全平方数为8M+1,12M+1,求20M+3是否为质数.当M可被3整除时,20M+3也可被3整除,所以M除3余1或2.当余数为2时8M+1除3余2,讨论可知没有平方数除3余2,所以M除3只能余1,此时8M+1的平方根能被3整除,12M+1的平方根除3余1或2,此时两者的平方差为两者之和乘两者差,算出后可知此数除3余2,但4M即为此数,且4M除3余1,矛盾.所以不存在这样的N.
好累啊...有不明白的或者我算错的地方自己多想想,再想不明白再问我,第3题实在不想看它第2次了...

2020年全国大学生数学建模竞赛ABC题怎么分析?

A题是热力学仿真方向的题目,其本质是优化问题,B题也可以看作是优化的题目,至少第一问是这样,后面的题目涉及到博弈心理方面的知识,C题是常见的信贷决策类大数据分析题目。依据开放性由大到小进行排序:C>B>A。C题最终的目标是给出合理的信贷策略,这个策略是依据数据分析结果合理给出的即可。B题除第一问要求玩家最佳策略及最终结果外,之后的每一问只要求给出最佳策略和具体讨论,这里的讨论就有很大的发挥空间。A题延续了以往优化题目的有合理答案区间的特点,故而开放性最小。规模与数据全国大学生数学建模竞赛是全国高校规模最大的课外科技活动之一。该竞赛每年9月(一般在上旬某个周末的星期五至下周星期一共3天,72小时)举行,竞赛面向全国大专院校的学生,不分专业(但竞赛分本科、专科两组。本科组竞赛所有大学生均可参加,专科组竞赛只有专科生(包括高职、高专生)可以参加)。同学可以向该校教务部门咨询,如有必要也可直接与全国竞赛组委会或各省(市、自治区)赛区组委会联系。全国大学生数学建模竞赛创办于1992年,每年一届,成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。2014年,来自全国33个省/市/自治区(包括香港和澳门特区)及新加坡、美国的1338所院校、25347个队(其中本科组22233队、专科组3114队)、7万多名大学生报名参加本项竞赛。

2021年“高教社杯”全国大学生数学建模竞赛ABC题怎么分析?

2021年“高教社杯”全国大学生数学建模竞赛ABC题的分析:A题疫苗生产问题思路。第一问确定答案,其他题思路新冠肺炎肆虐全球,给世界带来了深重的灾难。各国为控制疫情纷纷研发新冠疫苗。假定疫苗生产需要经过CJ1工位、CJ2工位、CJ3工位以及 CJ4工位等4个工艺流程。每个工艺流程一次性均能处理100剂疫苗,这100剂疫苗装进一个加工箱一起送进工位的设备进行处理。而且,只有按照CJ1-CJ2-CJ3-CJ4的顺序在4个工位都进行了加工以后,才算完成生产。为防止疫苗包装出现混乱,某疫苗生产公司生产部门规定,每个工位不能同时生产不同类型的疫苗,疫苗生产不允许插队。即进入第一个工位安排的每类疫苗的生产顺序一旦确定就要一直保持不变,而且前一种类型的疫苗离开某个工位后,后一种类型的疫苗才能进入这个工位。B题消防救援问题赛题思路。赛题描述随着我国经济的高速发展,城市空间环境复杂性急剧上升,各种事故灾害频发,安全风险不断增大,消防救援队承担的任务也呈现多样化、复杂化的趋势。对于每一起出警事件,消防救援队都会对其进行详细的记录。问题1:将每天分为三个时间段(0:00-8:00为时段Ⅰ,8:00-16:00为时段Ⅱ,16:00-24:00为时段Ⅲ),每个时间段安排不少于5人值班。假设消防队每天有30人可安排值班,请根据附件数据,建立数学模型确定消防队在每年2月、5月、8月、11月中第一天的三个时间段各应安排多少人值班。问题2:以该地2016年1月1日至2019年12月31日的数据为基础,以月份为单位,建立消防救援出警次数的预测模型。以2020年1月1日至2020年12月31日的数据作为模型的验证数据集,评价模型的准确性和稳定性,并对2021年各月份的消防救援出警次数进行预测。问题3:依据7种类别事件的发生时间,建立各类事件发生次数与月份关系的多种数学模型,以拟合度最优为评价标准,确定每类事件发生次数的最优模型。问题4:请建立数学模型,分析该地区2016-2020年各类事件密度在空间上的相关性,并且给出不同区域相关性最强的事件类别(事件密度指每周每平方公里内的事件发生次数)。问题5:请建立数学模型,分析该地各类事件密度与人口密度之间的关系(人口密度指每平方公里内的人口数量)。问题6:目前该地有两个消防站,分别位于区域J和区域N,综合考虑各种因素,建立数学模型,确定如果新建1个消防站,应该建在哪个区域?如果在2021-2029年每隔3年新建1个消防站,则应依次建在哪些区域?思路:基本和国赛的消防救援题差不多,还简单一点,属于路径优化问题。C题数据驱动的异常检测与预警问题赛题思路。题目描述推动生产企业高质量发展,最根本的底线是保证安全、防范风险,而生产过程中产生的数据能够实时反映潜在的风险。某生产企业某日00:00:00-22:59:59由生产区域的仪器设备记录的时间序列数据(已经进行数据脱敏),本题未给出数据的具体名称,这些数据可能是温度、浓度、压力等与安全密切相关的数据。建立数学模型,完成以下问题:问题1:给出的数据都可能存在波动,且所有波动都在安全值范围内。有些波动可能是正常性波动,例如随着外界温度或者产量变化的波动,或者可能是传感器误报。这些波动具有规律性、独立性、偶发性等特点,并不能产生安全风险,我们视为非风险性异常,不需要人为干预;有些波动具有持续性、联动性等特点。这些异常性波动的出现是生产过程中的不稳定因素造成的,预示着可能存在安全隐患,我们视为风险性异常,需要人为干预、分析和评定风险等级。请建立数学模型,给出判定非风险性异常数据和风险性异常数据的方法。问题2:结合问题1的结果,建立数学模型,给出风险性异常数据异常程度的量化评价方法,要求使用百分制(0-100分)对每个时刻数据异常程度进行评价(分值越高表示异常程度越高)。应用所建立的模型和附件1的数据,找到数据中异常分值最高的5个时刻及这5个时刻对应的异常传感器编号,每个时刻只填写5个异常程度最高的传感器编号,异常传感器不足5个则无需填满。如果得分为0,可以不用填写异常传感器编号,并给出数学模型对所得结果进行评价。思路:经典的异常分析问题,异常数据一般可以用机器学习的方法做,常用的聚类。kmeans、dbscan、决策树、孤立深林、LSTM,以上模型都可以套用进来。

上一篇:洛道任务

下一篇:没有了