如何解决数学中的牛吃草问题,求方法.
我找到曾经收藏的一点资料,发给你,希望对你有点帮助.
英国伟大的科学家牛顿,曾经写过一本数学书.书中有一道非常有名的、关于牛在牧场上吃草的题目,后来人们就把这类题目称为“牛顿问题”.
“牛顿问题”是这样的:“有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽.如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的.”
这类题目的一般解法是:把一头牛一天所吃的牧草看作1,那么就有:
(1)27头牛6天所吃的牧草为:27×6=162
(这162包括牧场原有的草和6天新长的草.)
(2)23头牛9天所吃的牧草为:23×9=207
(这207包括牧场原有的草和9天新长的草.)
(3)1天新长的草为:(207-162)÷(9-6)=15
(4)牧场上原有的草为:27×6-15×6=72
(5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:
72÷(21-15)=72÷6=12(天)
所以养21头牛,12天才能把牧场上的草吃尽.
请你算一算.
有一牧场,如果养25只羊,8天可以把草吃尽;养21只羊,12天把草吃尽.如果养15只羊,几天能把牧场上不断生长的草吃尽呢?
数学中的牛吃草问题公式是什么?
牛吃的草量-—生长的草量=消耗原有的草量。解决牛吃草问题常用到四个基本公式,分别是︰(1)草的生长速度= (对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。这四个公式是解决牛顿问题的基础。扩展资料:例子牛吃草问题:一片牧场南面一块15公顷的牧场上长满牧草,牧草每天都在匀速生长,这片牧场可供12头牛吃25天,或者供24头牛吃10天。在牧场的西侧有一块60公顷的牧场,20天中可供多少头牛吃草?【解析】设1头牛1天的吃草量为"1",摘录条件,将它们转化为如下形式方便分析12头牛 25天 12×25=300 :原有草量+25天自然减少的草量24头牛 10天 24×10=240 :原有草量+10天自然减少的草量从上发现:15公顷的牧场上25-10=15天生长草量=300-240=60,即1天生长草量=60÷15=4;那么15公顷的牧场上原有草量:300-25×4=200;则60公顷的牧场1天生长草量=4×(60÷15)=16;原有草量:200×(60÷15)=800.20天里,草场共提供草800+16×20=1120,可以让1120÷20=56(头)牛吃20天。