方程组怎么解
二元一次方程组怎么解
解二元一次方程组有两种方法:(1)代入消元法;(2)加减消元法(1)代入消元法 例:解方程组:x+y=5① 6x+13y=89② 由①得 x=5-y③ 把③代入②,得 6(5-y)+13y=89 即 y=59/7 把y=59/7代入③,得x=5-59/7 即 x=-24/7 ∴ x=-24/7 y=59/7 为方程组的解 我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法(elimination by substitution),简称代入法.(2)加减消元法 例:解方程组:x+y=9① x-y=5② ①+② 得 2x=14 即 x=7 把x=7代入①,得 7+y=9 解,得:y=2 ∴ x=7 y=2 为方程组的解 像这种解二元一次方程组的方法叫做加减消元法(elimination by addition-subtraction),简称加减法.。
解方程怎么解
解方程的步骤 (1)有括号就先去掉 (2)移项:将含未知数的项移到左边,常数项移到另右边 (3)合并同类项:使方程变形为单项式 (4)方程两边同时除以未知数的系数得未知数的值 例如: 3+x=18 解: x =18-3 x =15 ∴x=15是方程的解 —————————— 4x+2(79-x)=192 解:4x+158-2x=192 4x-2x+158=192 2x+158=192 2x=192-158 2x=34 x=17 ∴x=17是方程的解 —————————— πr=6.28(只取π小数点后两位) 解这道题首先要知道π等于几,π=3.1415926535,只取3.14, 解:3.14r=6.28 r=6.28/3.14=2 不过,x不一定放在方程左边,或一个方程式子里有两个x,这样就要用数学中的简便计算方法去解决它了。
有些式子右边有x,为了简便算,可以调换位置。 一元三次方程求解 一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。
一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。
归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下: (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到 (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3)) (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为 x^3=(A+B)+3(AB)^(1/3)x,移项可得 (4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知 (5)-3(AB)^(1/3)=p,-(A+B)=q,化简得 (6)A+B=-q,AB=-(p/3)^3 (7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即 (8)y1+y2=-(b/a),y1*y2=c/a (9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a (10)由于型为ay^2+by+c=0的一元二次方程求根公式为 y1=-(b+(b^2-4ac)^(1/2))/(2a) y2=-(b-(b^2-4ac)^(1/2))/(2a) 可化为 (11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2) y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2) 将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得 (12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2) B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2) (13)将A,B代入x=A^(1/3)+B^(1/3)得 (14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3) 式 (14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了。
x^y就是x的y次方好复杂的说塔塔利亚发现的一元三次方程的解法一元三次方程的一般形式是 x3+sx2+tx+u=0 如果作一个横坐标平移y=x+s/3,那么我们就可以把方程的二次项消去。所以我们只要考虑形如 x3=px+q 的三次方程。
假设方程的解x可以写成x=a-b的形式,这里a和b是待定的参数。 代入方程,我们就有 a3-3a2b+3ab2-b3=p(a-b)+q 整理得到 a3-b3 =(a-b)(p+3ab)+q 由二次方程理论可知,一定可以适当选取a和b,使得在x=a-b的同时, 3ab+p=0。
这样上式就成为 a3-b3=q 两边各乘以27a3,就得到 27a6-27a3b3=27qa3 由p=-3ab可知 27a6 + p3 = 27qa3 这是一个关于a3的二次方程,所以可以解得a。进而可解出b和根x。
怎么解二元一次方程最好能举出例子
如果是二元一次方程,就是一个不定方程例如3x+2y=5解法是要构造一个函数即用一个未知量表示另一个未知量3x+2y=52y=-3x+5y=-3x/2+5/2这就构成了一个函数,则此时x取一个值,y都有唯一解与它对应,有无数组解有些要对参数进行讨论,而确定解的个数的,比较麻烦。
一般有两种方法例如解x+y=8 -----(1)3x+y=12 ----(2)方法一:代入法由(1)得y=8-x ----(3)把(3)代入(2)3x+(8-x)=12x=2再把x=2代回(1)得2+y=8y=6方法二:加减法(2)式-(1)式得2x=4x=2后面的步骤一样一般常用的是方法二来一道复杂一点的2x+y=4 ---(1)x+2y=5 ---(2)把(1)式乘以2,得4x+2y=8 ----(3)然后(3)-(2),得3x=3x=1最后得y=2。
二元一次方程组如何解?需举例题说明清楚
代入消元法用代入消元法的一般步骤是:1.选一个系数比较简单的方程进行变形,变成 y = ax +b 或 x = ay + b的形式;2.将y = ax + b 或 x = ay + b代入另一个方程,消去一个未知数,从而将另一个方程变成一元一次方程;3.解这个一元一次方程,求出 x 或 y 值;4.将已求出的 x 或 y 值代入方程组中的任意一个方程(y = ax +b 或 x = ay + b),求出另一个未知数;5.把求得的两个未知数的值用大括号联立起来,这就是二元一次方程的解.加减消元法①在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可直接相减(或相加),消去一个未知数;②在二元一次方程组中,若不存在①中的情况,可选择一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),再把方程两边分别相减(或相加),消去一个未知数,得到一元一次方程;③解这个一元一次方程;④将求出的一元一次方程的解代入原方程组系数比较简单的方程,求另一个未知数的值;⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程组的解。
解方程组怎么解?
解方程组需要你在多个方程中找出多个变量的解。可以通过叠加、减法、乘法或替代法来解方程。如果想解方程组,按以下步骤来解。 方法1用相减法来解1在一个方程上写另一个方程。如果两个方程整理成:两个方程的一个变量系数相同,符号相同,则最好用相减法来解。比如两个方程都有2x,则相减消掉这个2x,从而解出其他变量。让x、y位置对应,一个方程式减去另一个,在第二个方程组外标上负号。比如两个方程2x + 4y = 8 ,2x + 2y = 2,第一个写第二个上面作为被减数,减号标在第二个方程外:2x + 4y = 8-(2x + 2y = 2)2消去相同的项。两式相减得(可以分别减各项):2x - 2x = 04y - 2y = 2y8 - 2 = 62x + 4y = 8 -(2x + 2y = 2) = 0 + 2y = 63解出剩下的变量。把x消掉后,可以解y了。把0移掉不影响等式。2y = 6把 2y、6 除以 2,y = 34把解得的y代入回去,解出x。现在y=3,代回去就可以解得x,选那个先解不重要,答案是一样的。如果一个比较复杂,则先消掉,解出简单的。y = 3 代入2x + 2y = 2 得到x2x + 2(3) = 22x + 6 = 22x = -4x = - 2于是得到解: (x, y) = (-2, 3)5检查答案。可以将两解代回去,看看是否都符合。以下是步骤:(-2, 3) 作为(x, y) ,代入2x + 4y = 8.2(-2) + 4(3) = 8-4 + 12 = 88 = 8(-2, 3) 作为(x, y),代入2x + 2y = 2.2(-2) + 2(3) = 2-4 + 6 = 22 = 2 方法2相加解方程组1在一个方程上写另一个方程。如果两个方程整理成:两个方程的一个变量系数相同,符号相反,则最好用相加法来解。比如两个方程一个有-3x,一个有3x,则相加消掉x,从而解出其他变量。在一个方程上写另一个方程,让x、y位置对应,一个方程式加上另一个,在第二个方程组外标上加号。比如3x + 6y = 8 和 x - 6y = 4,第一个写第二个上面,加号标在第二个方程外,把两式相加:3x + 6y = 8+(x - 6y = 4)2消去相同的项。两式相加得(可以分别加各项):3x + x = 4x6y + -6y = 08 + 4 = 12合并得到一次方程:3x + 6y = 8+(x - 6y = 4)= 4x + 0 = 123解出剩下的变量。把y消掉后,可以解x了。把0移掉不影响等式。4x + 0 = 124x = 12把 4x和12除以3 得到x = 34将刚才得到的解代入,得到另一个变量。这里x = 3,代回去得到y。先解哪一个不重要,因为答案一致。不过如果一项比较复杂,则先消掉,解简单的。x = 3 代入x - 6y = 4 解出y3 - 6y = 4-6y = 1把 -6y和1 除以 -6 得到y = -1/6这样你解出方程组的解了: (x, y) = (3, -1/6)5检查答案。可以将两解代回去,看看是否都符合。以下是步骤:(3, -1/6)作为(x, y) 代入3x + 6y = 83(3) + 6(-1/6) = 89 - 1 = 88 = 8(3, -1/6) 作为(x, y) 代入x - 6y = 4.3 - (6 * -1/6) =43 - - 1 = 43 + 1 = 44 = 4 方法3通过相乘来解1把一个方程写在另一个方程上。让x、y位置对应,系数化为整数。用这个方法时,两方程的所有变量系数都还不一样。3x + 2y = 102x - y = 22把一个方程两边同乘一数,使得其中一个变量和另一个方程的同变量系数一致。现在我们让整个第二个方程乘以2,-y 变为 -2y 和第一个方程的y系数一致:2 (2x - y = 2)4x - 2y = 43相加或相减两式。现在根据两式对应变量的符号是否相同,选择加法或减法来解。本例子中因为是2y和-2y对应,所以用加法方法,将y项消为0。 如果两个变量都是正数(负数)则用减法方法。以下是解的步骤:3x + 2y = 10+ 4x - 2y = 47x + 0 = 147x = 144解出剩余变量。7x = 14, 得到 x = 2.5将解出的变量代回方程,找出之前的变量值,尽量解更容易解的变量,这样解的过程比较轻松一点。x = 2 ---> 2x - y = 24 - y = 2-y = -2y = 2得到解 (x, y) = (2, 2)6检查答案。把两个解代入回原方程,验证是否正确。(2, 2)作为(x, y) 代入3x + 2y = 103(2) + 2(2) = 106 + 4 = 1010 = 10(2, 2) 作为(x, y) 代入2x - y = 22(2) - 2 = 24 - 2 = 22 = 2 方法4利用替代法解1分离一个变量。本方法适用于一个方程中,一个变量的系数为1的情况,这时只要分离此变量,代入另一个方程即可。例如2x + 3y = 9和 x + 4y = 2,在第二个方程式分离出x。x + 4y = 2x = 2 - 4y2把这个等式代入另一个方程。把分离的变量用另一个变量替换,这样可以代入方程来解得另一个变量。如下:x = 2 - 4y --> 2x + 3y = 92(2 - 4y) + 3y = 94 - 8y + 3y = 94 - 5y = 9-5y = 9 - 4-5y = 5-y = 1y = - 13解出剩余的变量。用y = - 1代回解出x:y = -1 --> x = 2 - 4yx = 2 - 4(-1)x = 2 - -4x = 2 + 4x = 6这样你就解出解了: (x, y) = (6, -1)4验证解,要确保解都正确,只要把解代回原方程,看看是否都符合方程组:(6, -1)作为(x, y)代入2x + 3y = 92(6) + 3(-1) = 912 - 3 = 99 = 9(6, -1)作为(x, y) 代入x + 4y = 26 + 4(-1) = 26 - 4 = 22 = 2