报考华中科技大学自动化方向的研究生
数学,英语,政治
就不用讲了,全国分区一样的。
专业课:
分自动控制原理1和自动控制原理2(1是自动科学,2是自动控制工程)
下面是2011年考试大纲
华中科技大学硕士研究生入学考试《自动控制理论》考试大纲
第一部分 考试说明
一.考试性质
《自动控制理论》是为我校招收控制科学与工程专业硕士研究生设置的考试科目。它的评价标准是高等学校优秀毕业生能达到良好及以上水平,以保证被录取者具有较扎实的专业基础。
考试对象为符合全国硕士研究生入学条件的报考我校控制科学与工程系及工科相关专业的考生。
二.考试形式与试卷结构
(一) 答卷方式:闭卷,笔试;
(二) 答题时间:180分钟。
(三) 题型 :计算题、简答题、选择题
(四)参考书目:
1. 自动控制原理 胡寿松编 国防工业出版社
2. 自动控制原理 孙德宝主编 化学工业出版社
第二部分 考查要点
(一) 自动控制的一般概念
1. 自动控制和自动控制系统的基本概念,负反馈控制的原理;
2. 控制系统的组成与分类;
3. 根据实际系统的工作原理画控制系统的方块图。
(二) 控制系统的数学模型
1. 控制系统微分方程的建立,拉氏变换求解微分方程。
2. 传递函数的概念、定义和性质。
3. 控制系统的结构图,结构图的等效变换。
4. 控制系统的信号流图,结构图与信号流图间的关系,由梅逊公式求系统的传递函数。
(三)线性系统的时域分析
1. 稳定性的概念,系统稳定的充要条件,Routh稳定判据。
2. 稳态性能分析
(1) 稳态误差的概念,根据定义求取误差传递函数,由终值定理计算稳态误差;
(2) 静态误差系数和动态误差系数,系统型别与静态误差系数,影响稳态误差的因素。
3.动态性能分析
(1) 一阶系统特征参数与动态性能指标间的关系;
(2) 典型二阶系统的特征参数与性能指标的关系;
(3) 附加闭环零极点对系统动态性能的影响;
(4) 主导极点的概念,用此概念分析高阶系统。
(四)线性系统的根轨迹法
1. 根轨迹的概念,根轨迹方程,幅值条件和相角条件。
2. 绘制根轨迹的基本规则。
3. 0o根轨迹。非最小相位系统的根轨迹及正反馈系统的根轨迹的画法。
4. 等效开环传递函数的概念,参数根轨迹。
5. 用根轨迹分析系统的性能。
(五)线性系统的频域分析
1. 频率特性的定义,幅频特性与相频特性。
2. 用频率特性的概念分析系统的稳态响应。
3. 频率特性的几何表示方法。
(1) 典型环节及开环系统幅相频率特性曲线(又称奈氏曲线或极坐标图)的画法。
(2) 典型环节及开环系统对数频率特性曲线(Bode图)的画法。
(3) 由对数幅频特性求最小相位系统的开环传递函数。
(4) 描述频率特性的对数幅相曲线(尼柯尔斯曲线)
4. Nquisty稳定性判据。
(1) 根据奈氏曲线判断系统的稳定性,运用判断式 ( 从零到无穷大变化, )或 ( 从 ~ );
(2) 由对数频率特性判断系统的稳定性;
5. 稳定裕量
(1) 当系统稳定时,系统相对稳定性的概念。
(2) 幅值裕量和相角裕量的定义及计算。
6. 闭环频率特性的有关指标及近似估算。
7. 频域指标与时域指标的关系。
(六)系统校正
1. 校正的基本概念,校正的方式,常用校正装置的特性。
2. 根据性能指标的要求,设计校正装置,用频率法确定串联超前校正、迟后校正和迟后-超前校正装置的参数。
3. 将性能指标转换为期望开环对数幅频特性,根据期望特性设计最小相位系统的校正装置。
4. 了解反馈校正和复合校正的基本思路与方法。
(七)离散系统的分析与校正
1. 离散系统的基本概念,脉冲传递函数及其特性,信号采样与恢复。
2. Z变换的定义,Z变换的方法。
3. 离散系统的数学描述,差分方程与脉冲传递函数
4. 离散系统的性能、和稳态误差分析。
(1) 稳定性分析。Z传递函数经W变换后,用劳斯判据分析其稳定性。
(2) 连续系统稳态性能分析方法在离散系统中的推广。
(3) 动态性能分析。离散系统的时间响应,采样器和保持器对动态性能的影响闭环极点与动态性能的关系。
5. 离散系统的综合,无纹波最少拍系统的设计。
(八)非线性控制系统分析
1. 非线性系统的特征,非线性系统与线性系统的区别与联系。
2. 相平面作图法、奇点的确定,用极限环分析系统的稳定性和自振。
3. 描述函数及其性质,用描述函数分析系统的稳定性、自振及有关参数。
(九)线性系统的状态空间分析与综合
1. 状态空间的概念,线性系统的状态空间描述,状态方程的解,状态转移矩阵及其性质。
2. 线性系统的可控性与可观性,状态可控与输出可控的概念,可控与可观标准型。
3. 线性定常系统的状态反馈与状态观测器设计
第三部分考试样题(略)
华中科技大学硕士研究生入学考试《自动控制原理二》考试大纲
第一部分 考试说明
一.考试性质
《自动控制原理二》是为我校招收控制工程专业学位硕士研究生设置的考试科目。它的评价标准是高等学校优秀毕业生能达到良好及以上水平,以保证被录取者具有较扎实的专业基础。
考试对象为报考我校硕士研究生的准考考生。
二.考试形式与试卷结构
(一) 答卷方式:闭卷,笔试;
(二) 答题时间:180分钟。
(三) 题型 :计算题、简答题。
(四) 参考书目:
1. 自动控制原理 胡寿松编 国防工业出版社
2. 自动控制原理 孙德宝主编 化学工业出版社
第二部分 考查要点
(一) 自动控制的一般概念
1. 自动控制和自动控制系统的基本概念,负反馈控制的原理;
2. 控制系统的组成与分类;
3. 根据实际系统的工作原理画控制系统的方块图。
(二) 控制系统的数学模型
1. 控制系统微分方程的建立,拉氏变换求解微分方程。
2. 传递函数的概念、定义和性质。
3. 控制系统的结构图,结构图的等效变换。
4. 控制系统的信号流图,结构图与信号流图间的关系,由梅逊公式求系统的传递函数。
(三)线性系统的时域分析
1. 稳定性的概念,系统稳定的充要条件,Routh稳定判据。
2. 稳态性能分析
(1) 稳态误差的概念,根据定义求取误差传递函数,由终值定理计算稳态误差;
(2) 静态误差系数和动态误差系数,系统型别与静态误差系数,影响稳态误差的因素。
3.动态性能分析
(1) 一阶系统特征参数与动态性能指标间的关系;
(2) 典型二阶系统的特征参数与性能指标的关系;
(3) 附加闭环零极点对系统动态性能的影响;
(4) 主导极点的概念,用此概念分析高阶系统。
(四)线性系统的根轨迹法
1. 根轨迹的概念,根轨迹方程,幅值条件和相角条件。
2. 绘制根轨迹的基本规则。
3. 0o根轨迹。非最小相位系统的根轨迹及正反馈系统的根轨迹的画法。
4. 等效开环传递函数的概念,参数根轨迹。
5. 用根轨迹分析系统的性能。
(五)线性系统的频域分析
1. 频率特性的定义,幅频特性与相频特性。
2. 用频率特性的概念分析系统的稳态响应。
3. 频率特性的几何表示方法。
(1) 典型环节及开环系统幅相频率特性曲线(又称奈氏曲线或极坐标图)的画法。
(2) 典型环节及开环系统对数频率特性曲线(Bode图)的画法。
(3) 由对数幅频特性求最小相位系统的开环传递函数。
(4) 描述频率特性的对数幅相曲线(尼柯尔斯曲线)
4. Nquisty稳定性判据。
(1) 根据奈氏曲线判断系统的稳定性,运用判断式 ( 从零到无穷大变化, )或 ( 从 ~ );
(2) 由对数频率特性判断系统的稳定性;
5. 稳定裕量
(1) 当系统稳定时,系统相对稳定性的概念。
(2) 幅值裕量和相角裕量的定义及计算。
6. 闭环频率特性的有关指标及近似估算。
7. 频域指标与时域指标的关系。
(六)系统校正
1. 校正的基本概念,校正的方式,常用校正装置的特性。
2. 根据性能指标的要求,设计校正装置,用频率法确定串联超前校正、迟后校正和迟后-超前校正装置的参数。
3. 将性能指标转换为期望开环对数幅频特性,根据期望特性设计最小相位系统的校正装置。
4. 了解反馈校正和复合校正的基本思路与方法。
(七)离散系统的分析与校正
1. 离散系统的基本概念,脉冲传递函数及其特性,信号采样与恢复。
2. Z变换的定义,Z变换的方法。
3. 离散系统的数学描述,差分方程与脉冲传递函数
4. 离散系统的性能、和稳态误差分析。
(1) 稳定性分析。Z传递函数经W变换后,用劳斯判据分析其稳定性。
(2) 连续系统稳态性能分析方法在离散系统中的推广。
(3) 动态性能分析。离散系统的时间响应,采样器和保持器对动态性能的影响闭环极点与动态性能的关系。
5. 离散系统的综合,无纹波最少拍系统的设计。
(八)非线性控制系统分析
1. 非线性系统的特征,非线性系统与线性系统的区别与联系。
2. 相平面作图法、奇点的确定,用极限环分析系统的稳定性和自振。
3. 描述函数及其性质,用描述函数分析系统的稳定性、自振及有关参数。
(九)线性系统的状态空间分析与综合
1. 状态空间的概念,线性系统的状态空间描述,状态方程的解,状态转移矩阵及其性质。
2. 线性系统的可控性与可观性,状态可控与输出可控的概念,可控与可观标准型。
3. 线性定常系统的状态反馈与状态观测器设计
第三部分考试样题(略)
华中科技大学电气工程及其自动化
华中科技大学电气工程及其自动化 引导语:华中科技大学电气工程及其自动化专业好不好?下面是我为大家精心整理的关于华中科技大学电气工程及其自动化分析,欢迎阅读! 华中科技大学电气与电子工程学院是国内电气工程学科领域实力最雄厚的教学科研单位之一,其历史渊源于原广西大学、武汉大学、湖南大学、中山大学、南昌大学等南方主要大学的电机学科,于1953年全国院系调整时合并组成华中工学院电机系,1988年改称华中理工大学电力工程系,2001年建制华中科技大学电气与电子工程学院。2007年,学院获得人事部、教育部授予的“全国教育系统先进集体”称号。 2012年教育部第三轮学科评估中,本学院在电气工程一级学科全国排名第二。 专业介绍 本科专业为电气工程及其自动化,跨电气工程、计算机科学与技术、控制科学与工程三个学科,是一个与国际接轨的`宽口径专业。 电气工程及其自动化专业的特点是电气与电子并重,电力电子与信息电子相融,软件与硬件兼备,装置与系统结合。培养从事电气工程、电子技术、电力系统、电力电子技术、自动控制、计算机、信号变换与处理等工作的宽口径、复合型高级工程技术及管理人才。主要课程有电路理论、电磁场理论、模拟电子技术,数字电子技术、电力电子技术、自动控制理论、电机学、电力传动与控制、信号与系统、微机原理及应用、电力系统工程等。 毕业生就业领域:电力系统、电力设计研究院、电力电子类高新技术企业、高等院校、科研院所、环保、金融、邮电与通讯部门和政府机关等。 培养方案 电气学院是学校规模最大的工科院系之一,拥有全国第一批博士点、博士后流动站和一级学科授权点。下设:电机及控制工程系、电力工程系、高电压工程系、应用电子技术系、电工新技术系、电磁新技术系、电气测量技术系和教学实验中心。 学院拥有的电气工程一级学科为首批国家一级学科重点学科。下设七个二级学科,即电机与电器、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术、脉冲功率与等离子体、电气信息测量技术。其中电机与电器、电力系统及其自动化、电工理论与新技术为国家二级学科重点学科,电力电子与电力传动为湖北省重点学科,并拥有新型电机国家专业实验室、脉冲强磁场教育部重点实验室和电力安全与高效湖北省重点实验室,学术水平居国内领先地位。 发展方向 学院全体师生员工以建设国际一流的电气工程学科为目标,以发展电工高新技术和电力技术为主导,凝炼学科方向,汇聚学术队伍,构筑学科基地,醇化学术氛围,团结务实,求真创新,共创电气工程学科更美好的未来。