第三周期元素有哪些?
第三周期元素有钠na,镁mg,铝al,硅si,磷p,硫s,氯cl,氩ar。元素在现代数学集合论中是指组成集合的每个对象。换言之,集合由元素组成,组成集合的每个对象被称为组成该集合的元素。例如:集合{1,2,3}中1,2,3都是集合的一个元素。化学元素介绍界中一百多种基本的金属和非金属物质,它们只由一种原子组成,其原子中的每一核子具有同样数量的质子,用一般的化学方法不能使之分解,并且能构成一切物质。 一些常见元素的例子有氢,氮和碳。2012年为止,共有118种元素被发现,其中94种存在于地球上。拥有原子序数大于83(铋之后)的元素都不稳定,会放射衰变。 第43和第61种元素(锝和钷)没有稳定的同位素,会进行衰变。可是,即使是原子序数高达95,没有稳定原子核的元素都一样能在自然中找到,这就是铀和钍的自然衰变。
第几周期是什么元素?
第一周期元素:1 氢(qīng) 2 氦(hài);第二周期元素:3 锂(lǐ) 4 铍(pí) 5 硼(péng) 6 碳(tàn) 7 氮(dàn) 8 氧(yǎng) 9 氟(fú) 10 氖(nǎi);第三周期元素:11 钠(nà) 12 镁(měi) 13 铝(lǚ) 14 硅(guī) 15 磷(lín) 16 硫(liú) 17 氯(lǜ) 18 氩(yà);第四周期元素:19 钾(jiǎ) 20 钙(gài) 21 钪(kàng) 22 钛(tài) 23 钒(fán) 24 铬(gè) 25 锰(měng) 26 铁(tiě) 27 钴(gǔ) 28 镍(niè) 29 铜(tóng) 30 锌(xīn) 31 镓(jiā) 32 锗(zhě) 33 砷(shēn) 34 硒(xī) 35 溴(xiù) 36 氪(kè);第五周期元素:37 铷(rú) 38 锶(sī) 39 钇(yǐ) 40 锆(gào) 41 铌(ní) 42 钼(mù) 43 锝(dé) 44 钌(liǎo) 45 铑(lǎo) 46 钯(bǎ) 47 银(yín) 48 镉(gé) 49 铟(yīn) 50 锡(xī) 51 锑(tī) 52 碲(dì) 53 碘(diǎn) 54 氙(xiān);第六周期元素:55 铯(sè) 56 钡(bèi) 57 镧(lán) 58 铈(shì) 59 镨(pǔ) 60 钕(nǚ) 61 钷(pǒ) 62 钐(shān) 63 铕(yǒu) 64 钆(gá) 65 铽(tè) 66 镝(dī) 67 钬(huǒ) 68 铒(ěr) 69 铥(diū) 70 镱(yì) 71 镥(lǔ) 72 铪(hā) 73 钽(tǎn) 74 钨(wū) ;75 铼(lái) 76 锇(é) 77 铱(yī) 78 铂(bó) 79 金(jīn) 80 汞(gǒng) 81 铊(tā) 82 铅(qiān) 83 铋(bì) 84 钋(pō) 85 砹(ài) 86 氡(dōng);第七周期元素:87 钫(fāng) 88 镭(léi) 89 锕(ā) 90 钍(tǔ) 91 镤(pú) 92 铀(yóu) 93 镎(ná) 94 钚(bù) 95 镅(méi) 96 锔(jú) 97 锫(péi) 98 锎(kāi) 99 锿(āi) 100 镄(fèi) 101 钔(mén) 102 锘(nuò) 103 铹(láo) 104 鈩(lú) 105 (dù) 106 (xǐ) 107 (bō) 108 (hēi) 109 䥑(mài) 110 鐽(dá) 111 錀(lún) 112 鎶(gē)。扩展资料: 元素在周期表中的位置不仅反映了元素的原子结构,也显示了元素性质的递变规律和元素之间的内在联系。使其构成了一个完整的体系,被称为化学发展的重要里程碑之一。同一周期内,从左到右,元素核外电子层数相同,最外层电子数依次递增,原子半径递减(零族元素除外)。失电子能力逐渐减弱,获电子能力逐渐增强,金属性逐渐减弱,非金属性逐渐增强。元素的最高正氧化数从左到右递增(没有正价的除外),最低负氧化数从左到右递增(第一周期除外,第二周期的O、F元素除外)。同一族中,由上而下,最外层电子数相同,核外电子层数逐渐增多,原子半径增大,原子序数递增,元素金属性递增,非金属性递减。 元素周期表的意义重大,科学家正是用此来寻找新型元素及化合物。 参考资料来源:百度百科-元素周期表
元素周期表有几个周期几个族?
有7个周期,16个族。每一个横行叫做一个周期,每一个纵行叫做一个族(VIII族包含三个纵列)。这7个周期又可分成短周期(1、2、3)、长周期(4、5、6、7)。共有16个族,从左到右每个纵列算一族(VIII族除外)。同一周期内,从左到右,元素核外电子层数相同,最外层电子数依次递增,原子半径递减(0族元素除外)。同一族中,由上而下,最外层电子数相同,核外电子层数逐渐增多,原子半径增大,原子序数递增,元素金属性递增,非金属性递减。元素周期表记忆技巧一价氢氟钾钠银,二价氧钡钙镁锌;三铝四硅五价磷,二四六硫二四碳;一二铜汞二三铁,一五七氯要记清;正一铜氢钾钠银,正二铜镁钙钡锌;三铝四硅四六硫,二四五氮三五磷;一五七氯二三铁,二四六七锰为正;碳有正四与正二,再把负价牢记心;负一溴碘与氟氯,负二氧硫三氮磷。
元素周期表中的各族元素都有哪些?
1、第一周期元素:1 氢(qīng) 2 氦(hài);2、第二周期元素:3 锂(lǐ) 4 铍(pí) 5 硼(péng) 6 碳(tàn) 7 氮(dàn) 8 氧(yǎng) 9 氟(fú) 10 氖(nǎi);3、第三周期元素:11 钠(nà) 12 镁(měi) 13 铝(lǚ) 14 硅(guī) 15 磷(lín) 16 硫(liú) 17 氯(lǜ) 18 氩(yà);4、第四周期元素:19 钾(jiǎ) 20 钙(gài) 21 钪(kàng) 22 钛(tài) 23 钒(fán) 24 铬(gè) 25 锰(měng) 26 铁(tiě) 27 钴(gǔ) 28 镍(niè) 29 铜(tóng) 30 锌(xīn) 31 镓(jiā) 32 锗(zhě) 33 砷(shēn)。元素周期表有7个周期,16个族。每一个横行叫作一个周期,每一个纵行叫作一个族(VIII族包含三个纵列)。这7个周期又可分成短周期(1、2、3)、长周期(4、5、6、7)。共有16个族,从左到右每个纵列算一族(VIII族除外)。扩展资料:化学元素周期表是根据原子序数从小至大排序的化学元素列表。列表大体呈长方形,某些元素周期中留有空格,使特性相近的元素归在同一族中,如碱金属元素、碱土金属、卤族元素、稀有气体等。这使周期表中形成元素分区且分有七主族、七副族、Ⅷ族、0族。由于周期表能够准确地预测各种元素的特性及其之间的关系,因此它在化学及其他科学范畴中被广泛使用,作为分析化学行为时十分有用的框架。化学元素(Chemical element)就是具有相同的核电荷数(核内质子数)的一类原子的总称。从哲学角度解析,元素是原子的电子数目发生量变而导致质变的结果。化学元素(英语:Chemical element),指自然界中一百多种基本的金属和非金属物质,它们只由一种原子组成,其原子中的每一核子具有同样数量的质子,用一般的化学方法不能使之分解,并且能构成一切物质。 一些常见元素的例子有氢,氮和碳。参考资料来源:百度百科-元素周期表
为什么第3、4和5号元素在宇宙中非常罕见?
如果把元素周期表上的每一个元素按照它们在宇宙中的丰度来排序,结果会出人意料。最常见的元素是氢,其质量大约占了整个宇宙质量的75%。另外大约25%是氦,它们主要产生于热大爆炸的早期阶段,但也产生于包括太阳在内的大多数恒星的氢核聚变。氧的丰度位列第三,碳位列第四,紧随其后的是氖、氮、铁、镁和硅,这些都是在大质量恒星内部合成出来的。一般而言,重元素很稀少,轻元素很丰富。但有三个例外:分别是3号元素锂、4号元素铍和5号元素硼。这三种元素是元素周期表中第三、第四和第五轻的元素,只比氢和氦更重一些,那么,为什么这些元素在宇宙中非常罕见呢?原初核合成在早期宇宙中,由夸克、轻子、光子、胶子和反物质粒子组成的早期宇宙合成出了第一批原子核。在早期宇宙中,光子的能量太高,以至于无法合成出哪怕是最简单的重原子核——氘,由一个质子和一个中子组成。在宇宙大爆炸之后三分钟,随着宇宙膨胀冷却,反粒子湮灭,质子和中子开始融合在一起,光子的能量不足以把原子核撞开,宇宙开始了原初核合成过程。原初核合成只持续了十几分钟,这奠定了宇宙的物质基础。宇宙的组成包括大约75%的氢,25%的氦-4,大约0.01%的氘和氦-3,以及大约0.0000001%的锂。少量的锂元素早在恒星形成之前就已经存在的,这对我们来说是一件非常非常好的事情,因为锂是地球上许多应用、技术,甚至是人体所需要的重要元素。恒星的核聚变然而,一旦宇宙中开始形成恒星,一切都被改变了。一旦温度升高到400万度以上,氢元素就能聚变成氦,我们的太阳目前正经历这样的过程。恒星的核聚变反应改变了宇宙,它们把事情朝着意想不到的方向改变。恒星从宇宙大爆炸所产生的气体云中形成,它们的核心温度非常高,从几百万度到几亿度。在这种温度下,对于氢元素而言,它们会发生核聚变反应。但对于锂元素而言,这种极高的温度足以使它们爆炸。锂元素一直是宇宙中最难以测量的元素之一,主要是因为当我们现在能够可靠地提取锂元素信号时,宇宙开始时的许多环境已经被破坏了。宇宙中充满了诸多重元素:碳、氮、氧、磷,以及地球生命所必需的元素,一直到元素周期表中的铀,甚至是更重的钚。那么,为什么就没有方法合成出锂元素呢?当恒星燃烧完核心中的氢原子核时,氢核聚变就会减慢并停止,从而导致辐射压力降低,无法对抗引力坍缩,使得核心区域会不断收缩。在此期间,恒星内部的温度将会进一步升高。由氦组成的核心可以达到十分极端的温度,使得氦可以通过3氦过程发生核聚变反应,合成出更重的元素。在像太阳这样的恒星中,最终被合成出来的是6号元素碳。合成更重元素的唯一途径是产生中子,这可以非常缓慢地使元素周期表中的重元素变多。对于中低质量恒星,一旦氦聚变完全结束,它们的外层就会脱离,形成行星状星云,而核心则会坍缩成白矮星。但对于大质量恒星,它们核心还能进一步坍缩和升温,从而启动碳核聚变。碳会聚变成氧,氧聚变成氖,氖又聚变成镁,不停地合成下去,硅、硫、氩、钙、钛和铬等元素会相继产生,一直到铁、镍和钴。铁核聚变会吸收能量,导致大质量恒星的平衡被打破,它们将会发生猛烈的超新星爆发。在超新星爆发的过程中,还会进一步合成出比铁更重的元素。另外,白矮星-白矮星合并或中子星-中子星合并也会制造出重元素。要是没有这些过程,就没有元素周期表中的各种元素,地球生命就不可能会进化出来。特殊的锂、铍和硼我们几乎可以解释在宇宙中发现的每一种元素,但锂、铍和硼是个例外。我们所知道的元素合成机制都不能产生铍和硼元素,而且我们所探测到的锂元素丰度不能仅仅用原初核合成来解释。氢聚变生成氦,氦是2号元素。氦需要三个氦核聚变成碳,碳是6号元素。但如何解释锂、铍和硼的存在呢?事实证明,没有一种恒星过程能在不摧毁这些元素的情况下,产生足够数量的它们。如果把氢与氦结合在一起,结果会得到锂-5,但它极为不稳定,很快就会衰变。如果把两个氦-4核融合在一起,可以合成出铍-8,但铍-8也十分不稳定,马上就会衰变。事实上,所有质量数为5或8的原子核都是不稳定的。从与恒星有关的过程中,无法得到这三种元素。然而,锂、铍和硼不仅都存在于宇宙中,而且它们对地球上的生命进化也是至关重要。锂、铍和硼究竟来自于哪里?根据目前的推测,这三种元素的存在要归功于宇宙中最高能的粒子来源——脉冲星、超大质量黑洞、超新星、千新星和活跃星系。这些都是宇宙中天然存在的超级粒子加速器,它们会向整个星系的各个方向喷射宇宙粒子,这些粒子甚至有足够的能量来跨越浩瀚的星系际空间。宇宙粒子加速器发射出去的高能粒子朝着四面八方运动,它们有可能会与其他粒子发生碰撞。如果被撞击的粒子是碳或者更重的原子核,那么,碰撞产生的巨大能量将会引发另一个核反应,重原子核分裂开来,产生一系列低质量粒子。这就像核裂变反应能把重原子分裂成轻原子一样,宇宙射线也会撞开重原子核。当高能粒子撞击重原子核时,巨大的原子核会分裂成各种各样的粒子。这种过程被称为散裂,它是锂、铍和硼的主要形成来源。锂、铍和硼是宇宙中仅有主要依靠散裂过程形成的元素,它们不像其他重元素那样依赖于与恒星有关的过程。由于锂、铍和硼的产生依赖于高能粒子在宇宙中的偶然碰撞,这使得它们的丰度非常低,只有碳、氧和氦的十亿分之一。虽然这些元素在宇宙中非常稀少,但它们是地球生命不可或缺的元素。